
https://manara.edu.sy/

Introduction to Classes
Chapter 13

1

https://manara.edu.sy/

https://manara.edu.sy/

13.1 Procedural and Object-Oriented Programming

•Procedural programming is a method of writing
software. It is a programming practice centered on
the procedures, or actions that take place in a
program.

•Object-Oriented programming is centered around
the object. Objects are created form abstract data
types that encapsulate data and functions together.

2

https://manara.edu.sy/

https://manara.edu.sy/

What’s Wrong with Procedural Programming?

• Programs with excessive global data

• Complex and convoluted programs

• Programs that are difficult to modify and extend

3

https://manara.edu.sy/

https://manara.edu.sy/

What is Object-Oriented Programming?
• OOP is centered around the object, which packages together both

the data and the functions that operate on the data.

4

https://manara.edu.sy/

https://manara.edu.sy/

Figure 13-1

5

Member Variables
 float width;

 float length;

 float area;

Member Functions
 void setData(float w, float l)

 { … function code … }

 void calcArea(void)

 { … function code … }

 void getWidth(void)

 { … function code … }

 void getLength(void)

 { … function code … }

 void getArea(void)

 { … function code … }

https://manara.edu.sy/

https://manara.edu.sy/

Terminology
• In OOP, an object’s member variables are often called its attributes

and its member functions are sometimes referred to as its behaviors
or methods.

6

https://manara.edu.sy/

https://manara.edu.sy/

Figure 13-2

7

https://manara.edu.sy/

https://manara.edu.sy/

How are Objects Used?
• Although the use of objects is only limited by the programmer’s

imagination, they are commonly used to create data types that are
either very specific or very general in purpose.

8

https://manara.edu.sy/

https://manara.edu.sy/

General Purpose Objects

• Creating data types that are improvements on C++’s built-
in data types. For example, an array object could be
created that works like a regular array, but additionally
provides bounds-checking.

• Creating data types that are missing from C++. For
instance, an object could be designed to process
currencies or dates as if they were built-in data types.

• Creating objects that perform commonly needed tasks,
such as input validation and screen output in a graphical
user interface.

9

https://manara.edu.sy/

https://manara.edu.sy/

Application-Specific Objects
• Data types created for a specific application. For example, in an

inventory program.

10

https://manara.edu.sy/

https://manara.edu.sy/

13.2 Introduction to the Class
• In C++, the class is the construct primarily used to create objects.

class class-name

{

 // declaration statements here

};

11

https://manara.edu.sy/

https://manara.edu.sy/

Example:
class Rectangle

{

 private:

 float width, length, area;

 public:

 void setData(float, float);

 void calcArea(void);

 float getWidth(void);

 float getLength(void);

 float getArea(void);

};

12

https://manara.edu.sy/

https://manara.edu.sy/

Access Specifiers

•The key words private and public are access
specifiers.

•private means they can only be accessed by the
member functions.

•public means they can be called from statements
outside the class.
• Note: the default access of a class is private, but it is still

a good idea to use the private key word to explicitly
declare private members. This clearly documents the
access specification of the class.

13

https://manara.edu.sy/

https://manara.edu.sy/

13.3 Defining Member Functions
• Class member functions are defined similarly to regular functions.

void Rectangle::setData(float w, float l)

{

 width = w;

 length = l;

}

14

https://manara.edu.sy/

https://manara.edu.sy/

13.4 Defining an Instance of a Class
• Class objects must be defined after the class is declared.

• Defining a class object is called the instantiation of a class.

• Rectangle box; // box is an instance of Rectangle

15

https://manara.edu.sy/

https://manara.edu.sy/

Accessing an Object’s Members
box.calcArea();

16

https://manara.edu.sy/

https://manara.edu.sy/

Pointers to Objects
Rectangle *boxPtr;

boxPtr = &box;

boxPtr->setData(15,12);

17

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-1
// This program demonstrates a simple class.
#include <iostream.h>
// Rectangle class declaration.
class Rectangle
{
 private:
 float width;
 float length;
 float area;
 public:
 void setData(float, float);
 void calcArea(void);
 float getWidth(void);
 float getLength(void);
 float getArea(void);
};

18

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

// setData copies the argument w to private member width and

// l to private member length.

void Rectangle::setData(float w, float l)

{

 width = w;

 length = l;

}

// calcArea multiplies the private members width and length.

// The result is stored in the private member area.

void Rectangle::calcArea(void)

{

 area = width * length;

}

19

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

// getWidth returns the value in the private member width.

float Rectangle::getWidth(void)

{

 return width;

}

// getLength returns the value in the private member length.

float Rectangle::getLength(void)

{

 return length;

}

// getArea returns the value in the private member area.

float Rectangle::getArea(void)

{

 return area;

}

20

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

void main(void)
{
 Rectangle box;
 float wide, long;
 cout << "This program will calculate the area of a\n";
 cout << "rectangle. What is the width? ";
 cin >> wide;
 cout << "What is the length? ";
 cin >> long;
 box.setData(wide, long);
 box.calcArea();
 cout << "Here is the rectangle's data:\n";
 cout << "width: " << box.getWidth() << endl;
 cout << "length: " << box.getLength() << endl;
 cout << "area: " << box.getArea() << endl;
}

21

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

This program will calculate the area of a

rectangle. What is the width? 10 [Enter]

What is the length? 5 [Enter]

Here is the rectangle's data:

width: 10

length: 5

area: 50

22

https://manara.edu.sy/

https://manara.edu.sy/

13.5 Why Have Private Members?
• In object-oriented programming, an object should protect its

important data by making it private and providing a public interface
to access that data.

23

https://manara.edu.sy/

https://manara.edu.sy/

13.6 Focus on Software Engineering: Some
Design Considerations
• Usually class declarations are stored in their own header files.

Member function definitions are stored in their own .CPP files.

• The #ifndef directive allows a program to be conditionally compiled.
This prevents a header file from accidentally being included more
than once.

24

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-2
Contents of RECTANG.H
#ifndef RECTANGLE_H
#define RECTANGLE_H
// Rectangle class declaration.
class Rectangle
{
 private:
 float width;
 float length;
 float area;
 public:
 void setData(float, float);
 void calcArea(void);
 float getWidth(void);
 float getLength(void);
 float getArea(void);
};

#endif

25

https://manara.edu.sy/

https://manara.edu.sy/

Program continues
Contents of RECTANG.CPP
#include "rectang.h"

// setData copies the argument w to private member width and
// l to private member length.
void Rectangle::setData(float w, float l)
{
 width = w;
 length = l;
}

// calcArea multiplies the private members width and length.
// The result is stored in the private member area.
void Rectangle::calcArea(void)
{
 area = width * length;
}

26

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

// getWidth returns the value in the private member width.
float Rectangle::getWidth(void)
{
 return width;
}
// getLength returns the value in the private member length.
float Rectangle::getLength(void)
{
 return length;
}
// getArea returns the value in the private member area.
float Rectangle::getArea(void)
{
 return area;

}

27

https://manara.edu.sy/

https://manara.edu.sy/

Program continues
Contents of the main program, PR13-2.CPP
// This program demonstrates a simple class.
#include <iostream.h>
#include "rectang.h" // contains Rectangle class declaration

// Don't forget to link this program with rectang.cpp!
void main(void)
{
 Rectangle box;
 float wide, long;
 cout << "This program will calculate the area of a\n";
 cout << "rectangle. What is the width? ";
 cin >> wide;
 cout << "What is the length? ";
 cin >> long;

28

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

box.setData(wide, long);

 box.calcArea();

 cout << "Here rectangle's data:\n";

 cout << "width: " << box.getWidth() << endl;

 cout << "length: " << box.getLength() << endl;

 cout << "area: " << box.getArea() << endl;

}

29

https://manara.edu.sy/

https://manara.edu.sy/

Performing I/O in a Class Object
• Notice that the Rectangle example has no cin or cout.

• This is so anyone who writes a program that uses the Rectangle class will not be “locked
into” the way the class performs input or output.

• Unless a class is specifically designed to perform I/O, operations like user input and
output are best left to the person designing the application.

30

https://manara.edu.sy/

https://manara.edu.sy/

Table 13-1

31

rectang.h Contains the class definition of Rectangle. Is

included by rectang.cpp and pr13-2.cpp

rectang.cpp Contains Rectangle's member function definitions.

Is compiled to an object file such as rectang.obj.

pr13-2.cpp Contains function main. It is compiled to an object

file, such as pr13-2.obj, which is linked with

rectang.cpp's object file to form an executable file.

 rectang.cpp is compiled to rectang.obj

pr13-2.cpp is compiled to pr13-2.obj

pr13-2.obj and rectang.obj are linked to make

pr13-2.exe

https://manara.edu.sy/

https://manara.edu.sy/

13.7 Focus on Software Engineering: Using
Private Member Functions
• A private member function may only be called from a function that is

a member of the same object.

32

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-3

#include <iostream.h>

#include "rectang2.h" // contains Rectangle class declaration

// Don't forget to link this program with rectang2.cpp!

void main(void)

{

 Rectangle box;

 float wide, long;

 cout << "This program will calculate the area of a\n";

 cout << "rectangle. What is the width? ";

 cin >> wide;

 cout << "What is the length? ";

 cin >> long;

 box.setData(wide, long);

 cout << "Here rectangle's data:\n";

 cout << "width: " << box.getWidth() << endl;

 cout << "length: " << box.getLength() << endl;

 cout << "area: " << box.getArea() << endl;

}

33

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

This program will calculate the area of a

rectangle. What is the width? 10 [Enter]

What is the length? 5 [Enter]

Here rectangle's data:

width: 10

length: 5

area: 50

34

https://manara.edu.sy/

https://manara.edu.sy/

13.8 Inline Member Functions
• When the body of a member function is defined inside a class

declaration, it is declared inline.

35

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-4

Contents of RECTANG3.H

#ifndef RECTANGLE_H

#define RECTANGLE_H

// Rectangle class declaration.

class Rectangle

{

 private:

 float width;

 float length;

 float area;

 void calcArea(void) { area = width * length; }

36

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

public:
 void setData(float, float); // Prototype
 float getWidth(void) { return width; }
 float getLength(void) { return length; }
 float getArea(void) { return area; }
};
#endif

Contents of rectang3.cpp
#include "rectang3.h"
// setData copies the argument w to private member width and
// l to private member length.
void Rectangle::setData(float w, float l)
{
 width = w;
 length = l;
 calcArea();
}

37

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

Contents of the main program, pr13-4.cpp

#include <iostream.h>

#include "rectang3.h" // contains Rectangle class declaration

// Don't forget to link this program with rectang3.cpp!

void main(void)

{

 Rectangle box;

 float wide, long;

 cout << "This program will calculate the area of a\n";

 cout << "rectangle. What is the width? ";

 cin >> wide;

 cout << "What is the length? ";

 cin >> long;

38

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

box.setData(wide, long);

 cout << "Here rectangle's data:\n";

 cout << "width: " << box.getWidth() << endl;

 cout << "length: " << box.getLength() << endl;

 cout << "area: " << box.getArea() << endl;

}

39

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

This program will calculate the area of a

rectangle. What is the width? 10 [Enter]

What is the length? 5 [Enter]

Here rectangle's data:

width: 10

length: 5

area: 50

40

https://manara.edu.sy/

https://manara.edu.sy/

13.9 Constructors
• A constructor is a member function that is automatically called when

a class object is created.

• Constructors have the same name as the class.

• Constructors must be declared publicly.

• Constructors have no return type.

41

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-5

// This program demonstrates a constructor.

#include <iostream.h>

class Demo

{

public:

 Demo(void); // Constructor

};

Demo::Demo(void)

{

 cout << "Welcome to the constructor!\n";

}

42

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

void main(void)

{

 Demo demoObj; // Declare a Demo object;

 cout << "This program demonstrates an object\n";

 cout << "with a constructor.\n";

}

43

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Welcome to the constructor.

This program demonstrates an object

with a constructor.

44

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-6
// This program demonstrates a constructor.

#include <iostream.h>

class Demo

{

public:

 Demo(void); // Constructor

};

Demo::Demo(void)

{

 cout << "Welcome to the constructor!\n";

}

45

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

void main(void)

{

 cout << "This is displayed before the object\n";

 cout << "is declared.\n\n";

 Demo demoObj;

 cout << "\nThis is displayed after the object\n";

 cout << "is declared.\n";

}

46

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

This is displayed before the object

is declared.

Welcome to the constructor.

This is displayed after the object

is declared.

47

https://manara.edu.sy/

https://manara.edu.sy/

Constructor Arguments
• When a constructor does not have to accept arguments, it is called

an object’s default constructor. Like regular functions, constructors
may accept arguments, have default arguments, be declared inline,
and be overloaded.

48

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-7

// This program demonstrates a class with a constructor
#include <iostream.h>
#include <string.h>

class InvItem

{

 private:

 char *desc;

 int units;

 public:

 InvItem(void) { desc = new char[51]; }

 void setInfo(char *dscr, int un) { strcpy(desc, dscr);

 units = un;}

 char *getDesc(void) { return desc; }

 int getUnits(void) { return units; }

};

49

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

void main(void)

{

 InvItem stock;

 stock.setInfo("Wrench", 20);

 cout << "Item Description: " << stock.getDesc() << endl;

 cout << "Units on hand: " << stock.getUnits() << endl;

}

50

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Item Description: Wrench

Units on hand: 20

51

https://manara.edu.sy/

https://manara.edu.sy/

13.10 Destructors

•A destructor is a member function that is
automatically called when an object is destroyed.
• Destructors have the same name as the class, preceded

by a tilde character (~)
• In the same way that a constructor is called then the

object is created, the destructor is automatically called
when the object is destroyed.

• In the same way that a constructor sets things up when
an object is created, a destructor performs shutdown
procedures when an object is destroyed.

52

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-8

// This program demonstrates a destructor.

#include <iostream.h>

class Demo

{

public:

 Demo(void); // Constructor

 ~Demo(void); // Destructor

};

Demo::Demo(void)

{

 cout << "Welcome to the constructor!\n";

}

53

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

Demo::~Demo(void)

{

 cout << "The destructor is now running.\n";

}

void main(void)

{

 Demo demoObj; // Declare a Demo object;

 cout << "This program demonstrates an object\n";

 cout << "with a constructor and destructor.\n";

}

54

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Welcome to the constructor!

This program demonstrates an object

with a constructor and destructor.

The destructor is now running.

55

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-9

#include <iostream.h>
#include <string.h>
class InvItem

{

 private:

 char *desc;

 int units;

 public:

 InvItem(void) { desc = new char[51]; }

 ~InvItem(void) { delete desc; }

 void setInfo(char *dscr, int un) { strcpy(desc, dscr);

 units = un;}

 char *getDesc(void) { return desc; }

 int getUnits(void) { return units; }

};

56

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

void main(void)

{

 InvItem stock;

 stock.setInfo("Wrench", 20);

 cout << "Item Description: " << stock.getDesc() << endl;

 cout << "Units on hand: " << stock.getUnits() << endl;

}

57

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Item Description: Wrench

Units on hand: 20

58

https://manara.edu.sy/

https://manara.edu.sy/

13.11 Constructors that Accept Arguments

• Information can be passed as arguments to an object’s constructor.

59

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-10

Contents of sale.h
#ifndef SALE_H
#define SALE_H

// Sale class declaration
class Sale
{
private:
 float taxRate;
 float total;
public:
 Sale(float rate) { taxRate = rate; }
 void calcSale(float cost)
 { total = cost + (cost * taxRate) };
 float getTotal(void) { return total; }
};
#endif

60

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

Contents of main program, pr13-10.cpp
#include <iostream.h>
#include "sale.h"

void main(void)
{
 Sale cashier(0.06); // 6% sales tax rate
 float amnt;
 cout.precision(2);
 cout.setf(ios::fixed | ios::showpoint);
 cout << "Enter the amount of the sale: ";
 cin >> amnt;
 cashier.calcSale(amnt);
 cout << "The total of the sale is $";
 cout << cashier.getTotal << endl;
}

61

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Enter the amount of the sale: 125.00

The total of the sale is $132.50

62

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-11

Contents of sale2.h
#ifndef SALE2_H
#define SALE2_H

// Sale class declaration
class Sale
{
private:
 float taxRate;
 float total;
public:
 Sale(float rate = 0.05) { taxRate = rate; }
 void calcSale(float cost)
 { total = cost + (cost * taxRate) };
 float getTotal (void) { return total; }
};
#endif

63

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

Contents of main program, pr13-11.cpp

#include <iostream.h>
#include "sale2.h"

void main(void)
{
 Sale cashier1; // Use default sales tax rate
 Sale cashier2 (0.06); // Use 6% sales tax rate
 float amnt;
 cout.precision(2);
 cout.set(ios::fixed | ios::showpoint);
 cout << "Enter the amount of the sale: ";
 cin >> amnt;
 cashier1.calcSale(amnt);
 cashier2.calcSale(amnt);

64

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

cout << "With a 0.05 sales tax rate, the total\n";

 cout << "of the sale is $";

 cout << cashier1.getTotal() << endl;

 cout << "With a 0.06 sales tax rate, the total\n";

 cout << "of the sale is $";

 cout << cashier2.getTotal() << endl;

}

65

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Enter the amount of the sale: 125.00

With a 0.05 sales tax rate, the total

of the sale is $131.25

With a 0.06 sales tax rate, the total

of the sale is $132.50

66

https://manara.edu.sy/

https://manara.edu.sy/

13.12 Focus on Software Engineering: Input
Validation Objects
• This section shows how classes may be designed to validate user

input.

67

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-12
// This program demonstrates the CharRange class.

#include <iostream.h>

#include "chrange.h" // Remember to compile & link chrange.cpp

void main(void)

{

 // Create an object to check for characters

 // in the range J - N.

 CharRange input('J', 'N');

 cout << "Enter any of the characters J, K, l, M, or N.\n";

 cout << "Entering N will stop this program.\n";

 while (input.getChar() != 'N');

}

68

https://manara.edu.sy/

https://manara.edu.sy/

Program Output with Example Input

Enter any of the characters J, K, l, M, or N

Entering N will stop this program.

j

k

q

n [Enter]

69

https://manara.edu.sy/

https://manara.edu.sy/

13.13 Overloaded Constructors
• More than one constructor may be defined for a class.

70

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-13
Contents of invitem2.h

#ifndef INVITEM2_H
#define INVITEM2_H
#include <string.h> // Needed for strcpy function call.

// InvItem class declaration
class InvItem
{
private:
 char *desc;
 int units;
public:
 InvItem(int size = 51) { desc = new char[size]; }
 InvItem(char *d) { desc = new char[strlen(d)+1];
 strcpy(desc, d); }

71

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

~InvItem(void) { delete[] desc; }

 void setInfo(char *d, int u) { strcpy(desc, d); units = u;}

 void setUnits (int u) { units = u; }

 char *getDesc(void) { return desc; }

 int getUnits(void) { return units; }

};

#endif

Contents of main program, pr13-13.cpp

// This program demonstrates a class with overloaded constructors

#include <iostream.h>

#include "invitem2.h"

void main(void)

{

72

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

InvItem item1("Wrench");

 InvItem item2;

 item1.setUnits(15);

 item2.setInfo("Pliers", 25);

 cout << "The following items are in inventory:\n";

 cout << "Description: " << item1.getDesc() << "\t\t";

 cout << "Units on Hand: " << item1.getUnits() << endl;

 cout << "Description: " << item2.getDesc() << "\t\t";

 cout << "Units on Hand: " << item2.getUnits() << endl;

}

73

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

The following items are in inventory:

Description: Wrench Units on Hand: 15

Description: Pliers Units on Hand 25

74

https://manara.edu.sy/

https://manara.edu.sy/

13.14 Only One Default Constructor and one
Destructor
• A class may only have one default constructor and one destructor.

75

https://manara.edu.sy/

https://manara.edu.sy/

13.15 Arrays of Objects
• You may declare and work with arrays of class objects.

InvItem inventory[40];

76

https://manara.edu.sy/

https://manara.edu.sy/

Program 13-14

Contents of invitem3.h

#ifndef INVITEM3_H

#define INVITEM3_H

#include <string.h> // Needed for strcpy function call.

// InvItem class declaration

class InvItem

{

private:

 char *desc;

 int units;

public:

 InvItem(int size = 51) { desc = new char[size]; }

 InvItem(char *d) { desc = new[strlen(d)+1];

 strcpy(desc, d); }

77

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

InvItem(char *d, int u) { desc = new[strlen(d)+1];
 strcpy(desc, d);
 units = u; }
 ~InvItem(void) { delete [] desc; }
 void setInfo(char * dscr, int u) { strcpy(desc, dscr); units = un;}
 void setUnits (int u) { units = u; }
 char *getDesc(void) { return desc; }
 int getUnits(void) { return units; }
};
#endif

Contents of main program, pr13-14.cpp

// This program demonstrates an array of objects.
#include <iostream.h>
#include <iomanip.h>
#include "invitem3.h"

78

https://manara.edu.sy/

https://manara.edu.sy/

Program continues

void main(void)

{

 InvItem Inventory[5] = { InvItem("Adjustable Wrench", 10),

 InvItem("Screwdriver", 20), InvItem("Pliers", 35),

 InvItem("Ratchet", 10), InvItem("Socket Wrench", 7)

 };

 cout << "Inventory Item\t\tUnits On Hand\n";

 cout << "--------------------------------\n";

 for (int Index = 0; Index < 5; Index++)

 {

 cout << setw(17) << Inventory[Index].GetDesc();

 cout << setw(12) << Inventory[Index].GetUnits() << endl;

 }

}

79

https://manara.edu.sy/

https://manara.edu.sy/

Program Output

Inventory Item Units On Hand

Adjustable Wrench 10

 Screwdriver 20

 Pliers 35

 Ratchet 10

 Socket Wrench 7

80

https://manara.edu.sy/

	Slide 1: Introduction to Classes
	Slide 2: 13.1 Procedural and Object-Oriented Programming
	Slide 3: What’s Wrong with Procedural Programming?
	Slide 4: What is Object-Oriented Programming?
	Slide 5: Figure 13-1
	Slide 6: Terminology
	Slide 7: Figure 13-2
	Slide 8: How are Objects Used?
	Slide 9: General Purpose Objects
	Slide 10: Application-Specific Objects
	Slide 11: 13.2 Introduction to the Class
	Slide 12: Example:
	Slide 13: Access Specifiers
	Slide 14: 13.3 Defining Member Functions
	Slide 15: 13.4 Defining an Instance of a Class
	Slide 16: Accessing an Object’s Members
	Slide 17: Pointers to Objects
	Slide 18: Program 13-1
	Slide 19: Program continues
	Slide 20: Program continues
	Slide 21: Program continues
	Slide 22: Program Output
	Slide 23: 13.5 Why Have Private Members?
	Slide 24: 13.6 Focus on Software Engineering: Some Design Considerations
	Slide 25: Program 13-2
	Slide 26: Program continues
	Slide 27: Program continues
	Slide 28: Program continues
	Slide 29: Program continues
	Slide 30: Performing I/O in a Class Object
	Slide 31: Table 13-1
	Slide 32: 13.7 Focus on Software Engineering: Using Private Member Functions
	Slide 33: Program 13-3
	Slide 34: Program Output
	Slide 35: 13.8 Inline Member Functions
	Slide 36: Program 13-4
	Slide 37: Program continues
	Slide 38: Program continues
	Slide 39: Program continues
	Slide 40: Program Output
	Slide 41: 13.9 Constructors
	Slide 42: Program 13-5
	Slide 43: Program continues
	Slide 44: Program Output
	Slide 45: Program 13-6
	Slide 46: Program continues
	Slide 47: Program Output
	Slide 48: Constructor Arguments
	Slide 49: Program 13-7
	Slide 50: Program continues
	Slide 51: Program Output
	Slide 52: 13.10 Destructors
	Slide 53: Program 13-8
	Slide 54: Program continues
	Slide 55: Program Output
	Slide 56: Program 13-9
	Slide 57: Program continues
	Slide 58: Program Output
	Slide 59: 13.11 Constructors that Accept Arguments
	Slide 60: Program 13-10
	Slide 61: Program continues
	Slide 62: Program Output
	Slide 63: Program 13-11
	Slide 64: Program continues
	Slide 65: Program continues
	Slide 66: Program Output
	Slide 67: 13.12 Focus on Software Engineering: Input Validation Objects
	Slide 68: Program 13-12
	Slide 69: Program Output with Example Input
	Slide 70: 13.13 Overloaded Constructors
	Slide 71: Program 13-13
	Slide 72: Program continues
	Slide 73: Program continues
	Slide 74: Program Output
	Slide 75: 13.14 Only One Default Constructor and one Destructor
	Slide 76: 13.15 Arrays of Objects
	Slide 77: Program 13-14
	Slide 78: Program continues
	Slide 79: Program continues
	Slide 80: Program Output

