
Starting Out with C++ 

Early  Objects 

Seventh Edition

by Tony Gaddis, Judy Walters, 

and Godfrey Muganda

Chapter 16: Exceptions, Templates, and 

the Standard Template Library (STL)



https://manara.edu.sy/

Topics

16.1  Exceptions 

16.2  Function Templates

16.3  Class Templates

16.4  Class Templates and Inheritance

16.5  Introduction to the Standard Template 
         Library

16-2

https://manara.edu.sy/


https://manara.edu.sy/

16.1  Exceptions

• An exception is a condition that occurs at execution time and makes 
normal continuation of the program impossible

• When an exception occurs, the program must either terminate or 
jump to special code for handling the exception.

• The special code for handling the exception is called an exception 
handler

16-3

https://manara.edu.sy/


https://manara.edu.sy/

Exceptions – Key Words

• throw – followed by an argument, is used to signal an exception

• try – followed by a block { }, is used to invoke code that throws an 
exception

• catch – followed by a block { }, is used to process exceptions 
thrown in preceding try block.  Takes a parameter that matches the 
type thrown.

16-4

https://manara.edu.sy/


https://manara.edu.sy/

Throwing an Exception

• Code that detects the exception must pass information to the 
exception handler. This is done using a throw statement:

      throw "Emergency!"

      throw 12;

• In C++, information thrown by the throw statement may be a value 
of any type

16-5

https://manara.edu.sy/


https://manara.edu.sy/

Catching an Exception

• Block of code that handles the exception is said to catch the exception and 
is called an exception handler

• An exception handler is written to catch exceptions of a given type: For 
example, the code

       catch(char *str)
   {

     cout << str;

   }

    can only catch exceptions of C-string type 

16-6

https://manara.edu.sy/


https://manara.edu.sy/

Catching an Exception

Another example of a handler:

       catch(int x)
   {

     cerr << "Error: " << x;

   }

    This can catch exceptions of type int

16-7

https://manara.edu.sy/


https://manara.edu.sy/

Connecting to the Handler 

Every catch block is attached to a try block of code and is 
responsible for handling exceptions thrown from that block
try

{

}

catch(char e1)

{  

   // This code handles exceptions

   // of type char that are thrown 

   // in this block

} 

16-8

https://manara.edu.sy/


https://manara.edu.sy/

Execution of Catch Blocks

• The catch block syntax is similar to a that of a function

• Catch block has a formal parameter that is initialized to the value of the 
thrown exception before the block is executed

16-9

https://manara.edu.sy/


https://manara.edu.sy/

Exception Example

• An example of exception handling is code that computes the square root 
of a number.

• It throws an exception in the form of a C-string if the user enters a 
negative number

16-10

https://manara.edu.sy/


https://manara.edu.sy/

Example

int main( )

{
  try

  {
    double x;
    cout << "Enter a number: ";
    cin >> x;    
    if (x < 0) throw "Bad argument!";
    cout << "Square root of " << x <<  " is " << sqrt(x);

  }
  catch(char *str)
  {
       cout << str;
  }
  return 0;  
}

16-11

https://manara.edu.sy/


https://manara.edu.sy/

Flow of Control

1. Computer encounters a throw statement in a 
try block

2. The computer evaluates the throw expression, 
and immediately exits the try block

3. The computer selects an attached catch block 
that matches the type of the thrown value, 
places the value in the catch block’s formal 
parameter, and executes the catch block

16-12

https://manara.edu.sy/


https://manara.edu.sy/

Uncaught Exception

• An exception may be uncaught if 
• there is no catch block with a data type that matches the exception that 

was thrown, or

• it was not thrown from within a try block

• The program will terminate in either case

16-13

https://manara.edu.sy/


https://manara.edu.sy/

Handling Multiple Exceptions

Multiple catch blocks can be attached to the same block of code. The 
catch blocks should handle exceptions of different types

         try{...}

         catch(int iEx){ }

         catch(char *strEx){ }

         catch(double dEx){ } 

16-14

https://manara.edu.sy/


https://manara.edu.sy/

Throwing an Exception Class

• An exception class can be defined and thrown 

• Catch block must be designed to catch an object of the exception 
class

• Exception class object can pass data to exception handler via data 
members

16-15

https://manara.edu.sy/


https://manara.edu.sy/

Exception When Calling new

• If new cannot allocate memory, it throws an exception of type 
bad_alloc

• Must #include <new> to use bad_alloc

• Can invoke new from within a try block, use a catch block to detect 
that memory was not allocated. 

16-16

https://manara.edu.sy/


https://manara.edu.sy/

Nested Exception Handling

try blocks can be nested in other try blocks and even in catch 
blocks
try

{

   try{ } catch(int i){ }

}

catch(char *s) 

{ }

16-17

https://manara.edu.sy/


https://manara.edu.sy/

Where to Find an Exception Handler?

• The compiler looks for a suitable handler attached to an enclosing 
try block in the same function

• If there is no matching handler in the function, it terminates 
execution of the function, and continues the search for a handler at 
the point of the call in the calling function.

16-18

https://manara.edu.sy/


https://manara.edu.sy/

Unwinding the Stack

• An unhandled exception propagates backwards into the calling function and 
appears to be thrown at the point of the call

• The computer will keep terminating function calls and tracing backwards 
along the call chain until it finds an enclosing try block with a matching 
handler, or until the exception propagates out of main (terminating the 
program).

• This process is called unwinding the call stack

16-19

https://manara.edu.sy/


https://manara.edu.sy/

Rethrowing an Exception

• Sometimes an exception handler may need to do some tasks, then 
pass the exception to a handler in the calling environment. 

• The statement

throw;

with no parameters can be used within a 
catch block to pass the exception to a 
handler in the outer block

16-20

https://manara.edu.sy/


https://manara.edu.sy/

16.2  Function Templates

• Function template: A pattern for creating definitions of functions that 
differ only in the type of data they manipulate

• Better than overloaded functions, since the code defining the 
algorithm of the function is only written once

16-21

https://manara.edu.sy/


https://manara.edu.sy/

Example

Two functions that differ only in the type of the 
data they manipulate

    void swap(int &x, int &y)
  { int temp = x; x = y; 
    y = temp;
  }

  void swap(char &x, char &y)
  { char temp = x; x = y; 
    y = temp;
  }

16-22

https://manara.edu.sy/


https://manara.edu.sy/

A swap Template

The logic of both functions can be captured with one template 

function definition

      template<class T>
   void swap(T &x, T &y)

   { T temp = x; x = y; 

     y = temp;

   }

16-23

https://manara.edu.sy/


https://manara.edu.sy/

Using a Template Function

•When a function defined by a template is called, the 
compiler creates the actual definition from the 
template by inferring the type of the type 
parameters from the arguments in the call:

       int i = 1, j = 2; 

       swap(i,j);

•This code makes the compiler instantiate the 
template with type int in place of the type 
parameter T

16-24

https://manara.edu.sy/


https://manara.edu.sy/

Function Template Notes

• A function template is a pattern

• No actual code is generated until the function named in the template 
is called

• A function template uses no memory 

• When passing a class object to a function template, ensure that all 
operators referred to in the template are defined or overloaded in the 
class definition

16-25

https://manara.edu.sy/


https://manara.edu.sy/

Function Template Notes

• All data types specified in template prefix must be used in template 
definition

• Function calls must pass parameters for all data types specified in the 
template prefix

• Function templates can be overloaded – need different parameter lists

• Like regular functions, function templates must be defined before being 
called

16-26

https://manara.edu.sy/


https://manara.edu.sy/

Where to Start  When Defining Templates

• Templates are often appropriate for multiple functions that perform 
the same task with different parameter data types

• Develop function using usual data types first, then convert to a 
template:
• add template prefix

• convert data type names in the function to a type parameter (i.e., a T type) in 
the template

16-27

https://manara.edu.sy/


https://manara.edu.sy/

16.3  Class Templates

• It is possible to define templates for classes. 

• Unlike functions, a class template is instantiated by supplying the type 
name (int, float, string, etc.) at object definition

16-28

https://manara.edu.sy/


https://manara.edu.sy/

Class Template

Consider the following classes

1. Class used to join two integers by adding them:  
class Joiner
{ public: 
    int combine(int x, int y)
    {return x + y;}
};

2. Class used to join two strings by concatenating them:
class Joiner
{ public:
    string combine(string x, string y)
    {return x + y;}
};

16-29

https://manara.edu.sy/


https://manara.edu.sy/

Example class Template

A single class template can capture the logic of both 
classes: it is written with a template prefix that 
specifies the data type parameters:
  template <class T>

  class Joiner

  {

  public:

     T combine(T x, T y)

        {return x + y;}

  };

16-30

https://manara.edu.sy/


https://manara.edu.sy/

Using Class Templates

To create an object of a class defined by a template, 
specify the actual parameters for the formal data 
types

    Joiner<double> jd;

    Joiner<string> sd;

    cout << jd.combine(3.0, 5.0);     

    cout << sd.combine("Hi ", "Ho");

 Prints 8.0 and Hi Ho

                             

16-31

https://manara.edu.sy/


https://manara.edu.sy/

16.5  Introduction to the Standard Template 
Library

• Standard Template Library (STL): a library containing templates for 
frequently used data structures and algorithms

• Programs can be developed faster and are more portable if they use 
templates from the STL

16-32

https://manara.edu.sy/


https://manara.edu.sy/

Standard Template Library

Two important types of data structures in the STL:

• containers: classes that store data and impose some organization on it

• iterators: like pointers; provides mechanisms for accessing elements in a 
container

16-33

https://manara.edu.sy/


https://manara.edu.sy/

Containers

Two types of container classes in STL:
• sequential containers: organize and access data sequentially, as in an array.  

These include vector, dequeue, and list containers.

• associative containers: use keys to allow data elements to be quickly 
accessed.  These include set, multiset, map, and multimap containers.

16-34

https://manara.edu.sy/


https://manara.edu.sy/

Creating Container Objects

• To create a list of int, write

       list<int> mylist;

• To create a vector of string objects, write

       vector<string> myvector;

• Requires the vector header file

16-35

https://manara.edu.sy/


https://manara.edu.sy/

Iterators

• Generalization of pointers, used to access information in containers

• Four types:
• forward (uses ++)

• bidirectional (uses ++ and -- )

• random-access

• input (can be used with cin and istream objects)

• output (can be used with cout and ostream objects)

16-36

https://manara.edu.sy/


https://manara.edu.sy/

Containers and Iterators

• Each container class defines an iterator type, used to access its 
contents

• The type of an iterator is determined by the type of the 
container: 

         list<int>::iterator x;    
         list<string>::iterator y;

      x is an iterator for a container of type list<int>

16-37

https://manara.edu.sy/


https://manara.edu.sy/

Containers and Iterators

Each container class defines functions that return iterators:

begin(): returns iterator to item at start

end(): returns iterator denoting end of container

16-38

https://manara.edu.sy/


https://manara.edu.sy/

Containers and Iterators

• Iterators support pointer-like operations: if iter is an iterator:
• *iter is the item it points to: this dereferences the iterator

• iter++  advances to the next item in the container

• iter-- backs up in the container

• The end() iterator points to past the end: it should never be 
dereferenced

16-39

https://manara.edu.sy/


https://manara.edu.sy/

Traversing a Container

Given a vector:

 vector<int> v;

 for  (int k=1; k<= 5; k++) 

   v.push_back(k*k);

Traverse it using iterators:

 vector<int>::iterator iter = v.begin();
 while (iter != v.end())

   { cout << *iter << " "; iter++;}

Prints  1 4 9 16 25

16-40

https://manara.edu.sy/


https://manara.edu.sy/

Algorithms

• STL contains algorithms implemented as function templates to 
perform operations on containers.

• Requires algorithm header file

• Collection of algorithms includes 

16-41

binary_search count

for_each find

max_element min_element

random_shuffle sort

and others

https://manara.edu.sy/


https://manara.edu.sy/

Using STL algorithms

• Many STL algorithms manipulate portions of STL containers specified 
by a begin and end iterator

• max_element(iter1, iter2) finds max element in the 
portion of a container delimited by iter1, iter2

• min_element(iter1, iter2) is similar to above

16-42

https://manara.edu.sy/


https://manara.edu.sy/

More STL algorithms

• random_shuffle(iter1, iter2) randomly reorders the 
portion of the container in the given range

• sort(iter1, iter2) sorts the portion of the container 
specified by the given range

16-43

https://manara.edu.sy/


https://manara.edu.sy/

random-shuffle Example

The following example 

• stores the squares 1, 4, 9, 16, 25 in a vector 

• shuffles the vector 

• then prints it out

16-44

https://manara.edu.sy/


https://manara.edu.sy/

random_shuffle example

int main()

{ 

   vector<int> vec;

   for (int k = 1; k <= 5; k++)

     vec.push_back(k*k);  

   random_shuffle(vec.begin(),vec.end());

   vector<int>::iterator p = vec.begin();

   while (p != vec.end())

   { cout << *p << "  "; p++;

   }

   return 0;

}

16-45

https://manara.edu.sy/


Starting Out with C++ 

Early  Objects 

Seventh Edition

by Tony Gaddis, Judy Walters, 

and Godfrey Muganda

Chapter 16: Exceptions, Templates, and 

the Standard Template Library (STL)


	Slide 1
	Slide 2: Topics
	Slide 3: 16.1  Exceptions
	Slide 4: Exceptions – Key Words
	Slide 5: Throwing an Exception
	Slide 6: Catching an Exception
	Slide 7: Catching an Exception
	Slide 8: Connecting to the Handler 
	Slide 9: Execution of Catch Blocks
	Slide 10: Exception Example
	Slide 11: Example
	Slide 12: Flow of Control
	Slide 13: Uncaught Exception
	Slide 14: Handling Multiple Exceptions
	Slide 15: Throwing an Exception Class
	Slide 16: Exception When Calling new
	Slide 17: Nested Exception Handling
	Slide 18: Where to Find an Exception Handler?
	Slide 19: Unwinding the Stack
	Slide 20: Rethrowing an Exception
	Slide 21: 16.2  Function Templates
	Slide 22: Example
	Slide 23: A swap Template
	Slide 24: Using a Template Function
	Slide 25: Function Template Notes
	Slide 26: Function Template Notes
	Slide 27: Where to Start  When Defining Templates
	Slide 28: 16.3  Class Templates
	Slide 29: Class Template
	Slide 30: Example class Template
	Slide 31: Using Class Templates
	Slide 32: 16.5  Introduction to the Standard Template Library
	Slide 33: Standard Template Library
	Slide 34: Containers
	Slide 35: Creating Container Objects
	Slide 36: Iterators
	Slide 37: Containers and Iterators
	Slide 38: Containers and Iterators
	Slide 39: Containers and Iterators
	Slide 40: Traversing a Container
	Slide 41: Algorithms
	Slide 42: Using STL algorithms
	Slide 43: More STL algorithms
	Slide 44: random-shuffle Example
	Slide 45:  random_shuffle example
	Slide 46

