

Kinematic models

Direct and inverse kinematic models

- Actual parameters of a serial robot are the coordinates of its end-effector
- Generalized parameters are the DH variables

Direct and inverse kinematic models

DKM

IKM

Find Actual parametres in fonction of Generalized parameters Find Generalized parametres in fonction of Actual parameters

$$\{x, y, z, r_x, r_y, r_z\} = f(\theta_i, d_i)$$

$$i = 1, 2..., n$$

 $\{\theta_i, d_i\} = f(x, y, z, r_x, r_y, r_z)$ $i = 1, 2, \dots, n$

Direct Kinematic Model

Unique solution

مَامعة Find the position and the orientation of the end effector....

When:

 $d_1 = 200$ $d_2 = 400$ $d_3 = 300$

If You Know the fixed distances:

 $L_0 = 500$ $L_1 = 150$ $L_2 = 150$ $L_3 = 150$

		[Ο,	-1,	Ο,			L2	+	d2]
GE	=	[-1,	ο,	Ο,			Ll	+	d1]
		[0,	ο,	-1,	LO	-	L3	-	d3]
		I	0,	0,	ο,					1]

آلفنارة Find the position and the orientation of the end effector....

When:

$$\theta_1 = \pi/3$$

 $\theta_2 = \pi/6$
 $d_3 = 100$

If You Know the fixed distances:

$$Base = 80$$

 $L_1 = 300$
 $L_2 = 300$
 $L_3 = 200$

 $T03 = \begin{bmatrix} C12, S12, 0, C1*L2 + C12*L3 \\ [S12, -C12, 0, L2*S1 + L3*S12] \\ [0, 0, -1, L1 - Base - d3] \\ [0, 0, 0, 0, 1] \end{bmatrix}$

مَامعة Find the position and the orientation of the end effector....

When:

$$\theta_1 = \pi/2$$

$$\theta_2 = \pi/6$$

$$\theta_3 = -\pi/4$$

If You Know the fixed distances:

$$L_1 = 500$$

 $L_2 = 500$
 $L_3 = 300$

		[-C23*S1,	S1*S23,	-C1,	-S1*(C2*L2 + C23*L3)]
T03	=	I	C1*C23,	-C1*S23,	-S1,	C1*(C2*L2 + C23*L3)]
		[-S23,	-C23,	0,	L1 - L2*S2 - L3*S23]
		[0,	0,	0,	1]

	Position	RPY_Angels	RPY_Orientation	Euler_Angels	Euler_Orientation	
Ex	-722.79	Alfa	3.1416	Psi	-1.2246e-16	
Ey	7.7963e-14	Beta	-0.2618	Theta	1.5708	
Ez	327.65	Gamma	-1.5708	Phi	2.8798	
Is0k	1	IsOk	1	IsOk	1	

Robotics

Thanks

These examples must be re-done home, and understand the different types of robots.