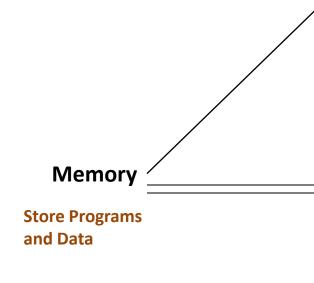
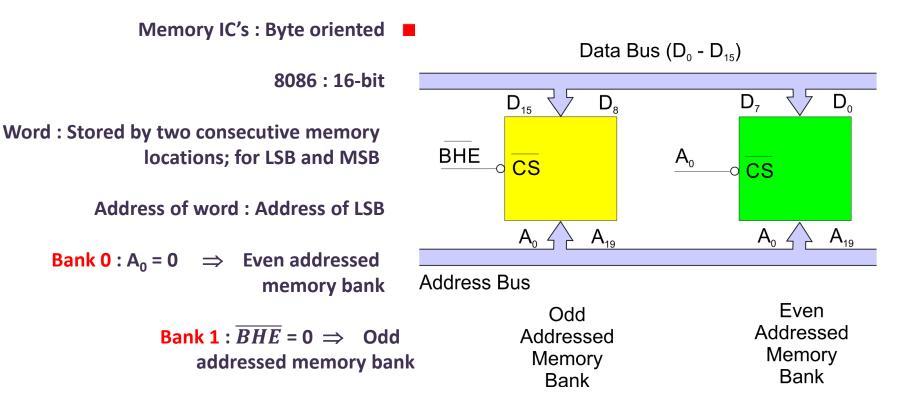
Interfacing memory and i/o ports


- Registers inside a microcomputer
- Store data and results temporarily
- No speed disparity
- ∙ Cost ↑

Primary or Main Memory


- Storage area which can be directly accessed by microprocessor
- Store programs and data prior to execution
- Should not have speed disparity with processor ⇒
 Semi Conductor memories using CMOS technology
- ROM, EPROM, Static RAM, DRAM

Secondary Memory

- Storage media comprising of slow devices such as magnetic tapes and disks
- Hold large data files and programs: Operating system, compilers, databases, permanent programs etc.

Memory organization in 8086

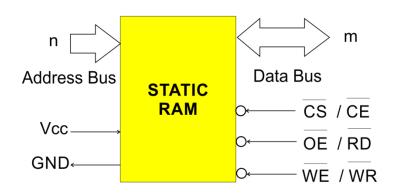
Memory organization in 8086

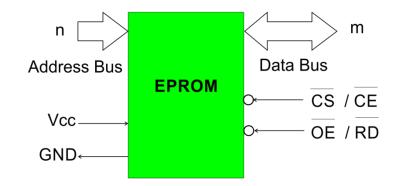
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Address Bus Odd Addressed Memory Bank				Even ddressed Memory Bank		
		Operation	BHE	A ₀	Data Lines Used	
-	1 Read/ Write byte at an ev	ven address	1	0	$D_7 - D_0$	
	2 Read/ Write byte at an o	Read/ Write byte at an odd address		1	$D_{15} - D_8$	
	Read/ Write word at an even address		0	0	$D_{15} - D_0$	
4	4 Read/Write word at an odd address		0	1	D ₁₅ – D ₀ in first operation byte from odd bank is transferred	
			1	0	$D_7 - D_0$ in first operation byte from odd bank is transferred	

Memory organization in 8086

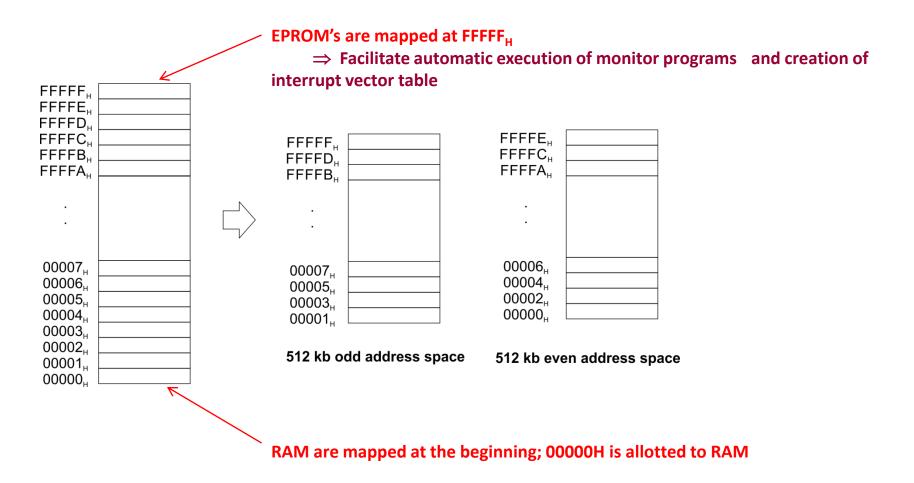
- Available memory space = EPROM + RAM
- Allot equal address space in odd and even bank for both EPROM and RAM
- Can be implemented in two IC's (one for even and other for odd) or in multiple IC's

■ Memory interface ⇒ Read from and write in to a set of semiconductor memory IC chip


EPROM \Rightarrow Read operations

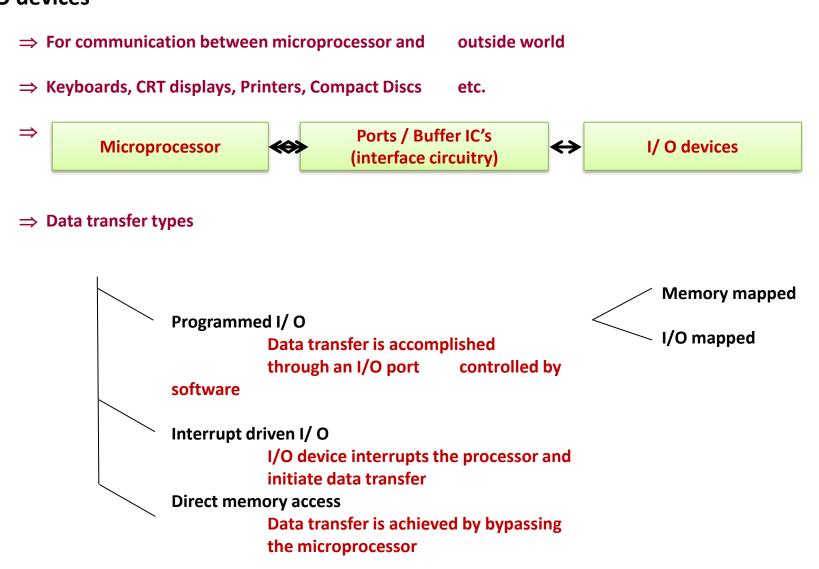

RAM \Rightarrow Read and Write

In order to perform read/ write operations,


- Memory access time < read / write time of the processor</p>
- Chip Select (CS) signal has to be generated
- Control signals for read / write operations

Allot address for each memory location

No of Address pins	r	Range of address in hexa		
	In Decimal	In kilo	In hexa	
20	2 ²⁰ = 10,48,576	1024 k = 1M	100000	00000 to FFFFF



Monitor Programs

- ⇒ Programing 8279 for keyboard scanning and display refreshing
- \Rightarrow Programming peripheral IC's 8259, 8257, 8255, 8251, 8254 etc
- \Rightarrow Initialization of stack
- \Rightarrow Display a message on display (output)
- \Rightarrow Initializing interrupt vector table

- Note : 8279 Programmable keyboard/ display controller
 - 8257 DMA controller
 - 8259 Programmable interrupt controller
 - 8255 Programmable peripheral interface

Interfacing I/O and peripheral devices

8086 and 8088 comparison

Memory mapping	I/O mapping		
20 bit address are provided for I/O devices	8-bit or 16-bit addresses are provided for I/O devices		
The I/O ports or peripherals can be treated like memory locations and so all instructions related to memory can be used for data transmission between I/O device and processor	Only IN and OUT instructions can be used for data transfer between I/O device and processor		
Data can be moved from any register to ports and vice versa	Data transfer takes place only between accumulator and ports		
When memory mapping is used for I/O devices, full memory address space cannot be used for addressing memory.	Full memory space can be used for addressing memory.		
⇒ Useful only for small systems where memory requirement is less	⇒ Suitable for systems which require large memory capacity		
For accessing the memory mapped devices, the processor executes memory read or write cycle.	For accessing the I/O mapped devices, the processor executes I/O read or write cycle.		
\Rightarrow M / \overline{IO} is asserted high	\Rightarrow M / $\overline{10}$ is asserted low		