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Lecture 1: Systems of Linear Equations

CECC122: Linear Algebra and Matrix Theory
Manara University
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Systems of Linear Equations
Matrices

The Determinant of a Matrix
Vector spaces

Inner product spaces

Linear transformations

Eigenvalues and Eigenvectors
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Systems of Linear Equations 8yl
1.1 Introduction to Systems of Linear Equations
« a linear equation in n variables: ax +ax, +---+a,x, =b
a,, a,, ..., a,, b: real numbers
a,: leading coefficient
x,: leading variable
« Notes:
(1) Linear equations have no products or roots of variables and no

variables involved 1n trigonometric, exponential, or logarithmic functions.

(2) Variables appear only to the first power.
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« Ex 1: (Linear or Nonlinear)

Linear (a)3x +2y =7
Linear (¢)x, —2x, +10x, +x, =0

NonLinear (8)@<— z =2

Products

NonLinear (g) 2x, —3x, =0
N

Trigonometric functions

(b) %x +y -7z = \/E Linear

(d) (sin % Y, —4x, =e® Linear

Exponential
(f ) —_ 2y — 4 NonLinear
h )@@: 4 NonLinear
Not the first power
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» a solution of a linear equation in n variables:
ax, +ax,+---+ax =b
=s_ suchthat:as, +as, +---+a,s, =b
« Solution set: the set of all solutions of a linear equation
» Ex 2: (Parametric representation of a solution set)

X =8,X, =8,,...,X%

X, +2x,=4 (2, 1) 1s a solution, 1.e. x, =2, x, = 1

If you solve for x, in terms of x,, you obtain x, = 4 — 2x,

By letting x, = ¢ you can represent the solution set as x, =4 — 2¢
And the solutions are {(4 — 2z, ?)|f € R} or {(s, 2 —Y2s5)|s € R}

In vector form: (x,, x,) =4, 0) + (=2, 1) = (0, 2) + s(1, =%4)

https://manara.edu.sy/



>y

» a system of m linear equations in n variables:
apx; + oapx, + -+ oax, = b
AyXy + apX, + -+ ayx, = b
a x, +a.x, + - +a x =b

» Consistent:
A system of linear equations has at least one solution.

» Inconsistent:
A system of linear equations has no solution.
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« Ex 3: (Solution of a system of linear equations)

x + y = 3
x — y = -l

two intersecting lines

exactly one solution

[

deola
x + y =3
2x + 2y = 6

two coincident lines

infinite number

x + y = 3

X + y =
two parallel lines

no solution
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« Ex 4: (Using back substitution to solve a system in row echelon form)
x — 2y = 5 (1)
y = -2 (2)

Sol: By substituting y = -2 into (1), you obtain
x — 2A=2) = 5

x = 1

The system has exactly one solution: x=1, y = -2
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« Ex 5: (Using back substitution to solve a system in row echelon form)

x — 2 + 32z =9 (1)
y + 3z = 5 (2)
z = 2 (3)
Sol: Substitute z = 2 into (2)
y + 32) = 5
y = -1

and substitute y =—1 and z =2 into (1)
x — 2A-1D + 32 = 9
x = 1
The system has exactly one solution: x=1,y=-1,z=2
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» Equivalent:
Two systems of linear equations are called equivalent 1f they have
precisely the same solution set

= Notes:

Each of the following operations on a system of linear equations
produces an equivalent system,

(1) Interchange two equations.

(2) Multiply an equation by a nonzero constant.

(3) Add a multiple of an equation to another equation.
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» EX 6: Solve a system of linear equations (consistent system)

x — 2 + 3z = 9 (1)
-x + 3y = —4 (2)
2x — 5 + 5z = 17 (3)

Sol:  (D+(2) > (2)
x — 2y + 3z = 9
y + 3z = 5 (4)
2x — Sy + >z = 17
(D)x(=2)+(3) —>(3)
x — 2y + 3z = 9
y + 3z = 5
-y - z = -1 (35)
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(4) +(3) = (5)
x — 2 + 3z =9
y + 3z = 35
2z = 4 (6)
1
(6)><§—>(6)
X - 2y + 3z =

y + 3z =

o D \O

So the solutionis: ¥ =T, y=-1,z=2
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« EXx 7: Solve a system of linear equations (inconsistent system)

Xpe=l3x, % = (1)
2%, — X5 — o2 (2)
X + vy — 3xy = = (3)

Sol: ()x(=2)+(2) > (2)

(Dx(=D+3)—=>0)

x, — 3x, + x; = 1

Sx, — 4x; = 0 (4)
Sx, — 4x, = -2 (5)
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(Hx(=D+() =)

Xpo— 3%, & x, =l
>, — 4x, = 0
0 = =2 (a false statement)

So the system has no solution (an inconsistent system).
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» Ex 8: Solve a system of linear equations (infinitely many solutions)
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X, — x, = 0 (1)
X4 3%y = =1 (2)
%, + 3%, = 1 (3)

Sol: (1) & (2)

X, - 3x, = -1 (1)

X, — x3 = 0 (2)
-x, + 3x, = 1 (3)
(D+G3) =)
X - 3x, = -1

X, — x; = 0

3, — 3x; = 0 (4)
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(2)x(=3)+(4) > (4)
X, - 3x, = -1
X, — x3 = 0
0O = 0 (a True statement)

=X, =X;, X
letting x; = ¢, then the solutions are

{(3t-1, ¢, 1)|t € R}

So the system has infinitely many solutions.
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1.2 Gaussian Elimination and Gauss-Jordan Elimination

= MXn matrix: I T
dyy  dyp dy,
Qo  Hgp D | m rows
_am 1 am 2 &l am N
= Notes: n columns

(1) Every entry a; in a matrix is a number.

(2) A matrix with m rows and »n columns is said to be of size mxn.
(3) If m = n, then the matrix is called square of order n.

(4) For a square matrix, a,,, @,,, ..., a,, are called the main diagonal entries.
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« Ex 1:

Matrix

2|

0 0
0 0

1

=3

[

deola
Size
I x1

2x2

1 x4

3x2
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« a System of m equations in n variables:

a; X
Xy

am lxl

Matrix form: Ax=5b

A

T apx,
‘f‘ )Xy

+ an12x2

+ alﬂxﬂ — bl

+ aanﬂ = bZ

+ amnx no bm
aln xl bl
a X b

ol o x=|"2|, b=|7:
angn ] _xH _ _bm |
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» Augmented matrix:

d;, dyp
dy; dy
aml am 2

a

mn

. Elemeniary row operation:

RS N~

m

(1) Interchange two rows.

(2) Multiply a row by a nonzero constant.

[

e

=[4 |b]

« Coefticient matrix;

d;, dyp
d,; dy
_aml amZ
rit R, R,

r' (DR SR

(3) Add a multiple of a row to another row. r,.J(.k " (k)R, +R el
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« Row equivalent:
Two matrices are said to be row equivalent if one can be obtained from
the other by a finite sequence of elementary row operation.
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« Row-echelon form: (1, 2, 3)
« Reduced row-echelon form: (1, 2, 3, 4)

(1) All row consisting entirely of zeros occur at the bottom of the
matrix.

(2) For each row that does not consist entirely of zeros, the first
nonzero entry is 1 (called a leading 1).

(3) For two successive (nonzero) rows, the leading 1 in the higher row
is farther to the left than the leading 1 in the lower row.

(4) Every column that has a leading 1 has zeros in every position above
and below its leading 1.
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» Ex 4: (Row-echelon form or reduced row-echelon form)
12 -1 4] 0 1|0 5]
O 1| O 3| row-echelon form 0 0 1 _3l Ziifgﬁ ;2;;
0O 0 1| -2 0O 0 0 O
1|-5 2 -1 3 110 0 -1
0 0 1 3 -2 row-echelon form O 1|0 2| reduced row-
O O 0 1| 4 O 0 1| 3| echelonform
0 00 0 1 00 0 0
1 2 -3 4] 1 2 -1 2]
0 2 I -1 O 0 O O
0 0 I -3 O 1 2 -4
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« Gaussian elimination:

The procedure for reducing a matrix to a row-echelon form.
« Gauss-Jordan elimination:

The procedure for reducing a matrix to a reduced row-echelon form.

« Notes:
(1) Every matrix has an unique reduced row echelon form.

(2) A row-echelon form of a given matrix is not unique.

(Different sequences of row operations can produce different row-
echelon forms.)
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« Ex 3: Solve a system by Gauss-Jordan elimination method (one solution)

Sol:

x — 2y + 3z =9
-x + 3y = —4
_ augmented matrix 2 - 5 + > = 17
I =23 9 mw |1l =2 3 9 (D
-1 3 0 -4 Fio s T3 o O =
i 2 -5 5 17_ 0 -1 -1 -1
1 =2 3 9] 4D . .o [1 00 1
0 1 3 5 31 2 0 ' A . =
0O 0 1 2 O 0 1 2

row-echelon form

reduced row-echelon form

1 -2
0 1
0 0
X
y
Z

(9

https://manara.edu.sy/

25




Py

LUTEERE O e

2, + dx,— 2x,= 0

3x, + 5x, = 1
Sol:
ted matri Dy gD
monannimeix 7, 7'2(12)’ 10 5 2
[3 50 1} A

reduced row-echelon form

leading variables: x , x,

+
=
|

W)

x,  =3x,= -1 free variable:  x,
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X, = 2- 5x,
x,= —1+ 3x,
letting x; = ¢, then the solutions are:

((2-5t —1+3t f)te R}

So the system has infinitely many solutions.
« Ex 8: Solve a system by Gauss-Jordan elimination method (no solution)

x, — x, + 2x, = 4
X, + x, = 6
2%, — 3x, + x, = 4
3, + 2 —~ x; = d

1 z 3
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Sol: ﬁ
augmented matrix )
1 -1 2 4 I
1 0 1 6 rl(z_l): r1(3_2)= F1(4_3): rz(s])h 0
2 -3 5 4 0
3 2 -1 1 0

T, 4 2, = 4

X — Xan= 2

= = 0 = =2
I, — Txy =M

Because the third equation is not possible, the system has no solution.
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