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Goals and Objectives:

* The lecture focuses on mathematical models of physical systems.

» After completing this chapter, you should be able to:
* Describe a physical system using differential equations.

 Understand how these equations are derived based on physical laws
governing the system.

* Recognize the significance of deriving mathematical models in control
systems analysis.




Mathematical Models of Systems Objectives:

e Control systems rely on guantitative mathematical models of physical
systems.

* These models describe dynamic behavior with ordinary differential
equations, covering various systems such as mechanical, hydraulic, and
electrical.

* To handle the inherent nonlinearity of most physical systems, we may use
linearization approximations, then we will use Laplace transform methods
to get a transfer function.

e Transfer functions are introduced to represent the input-output
relationships of components and subsystems and are typically organized
into block diagrams or signal-flow graphs for graphical analysis.




Mathematical Model in Control Engineering:

 The creation of a mathematical model is a fundamental task in control
engineering for analysis and design.

A mathematical model is a set of differential equations that
accurately represents a dynamic system's behavior.

 Note that there can be multiple mathematical models for the same
system, depending on the context.




Controller design procedure (preview)
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Mathematical model

* Representation of the input-output (signal) relation of a physical system

Input Physical _ Output
system |

Modeling

v



Important remarks on models

* Modeling is the most important and difficult task in control system design.

* No mathematical model exactly represents a physical system.

Math model # Physical system
Math model =~ Physical system

Do not confuse models with physical systems!

* In this lecture, we may use the term “system” to mean a mathematical
model.



TABLE 2.2 Laplace transform theorems
I_a p | a C e Item no. Theorem Name
f | Zf@)] =FE) = o f(0)e Definition
ra n S O rI I I 2, Lkf(1)] = kF(s) Linearity theorem
. 3. L[f1(t) + f5()] = F1(s) + Fa(s) Linearity theorem
P rO p e rt I e S 4. Lle “f(1)] = F(s +a) Frequency shift theorem

5 ZLf(t—T)] = e T F(s) Time shift theorem

6. L\ f(ar)] = lF(i) Scaling theorem

7 z Z—f] =sF(s) — f(0—) Differentiation theorem

7 ;

g R —ﬂ— - Sz[:(g) — sf(0—) — f'(0-) Differentiation theorem
72 : s

9 K% d'f] = s"F(s) — is"—kfk_1(0—) Differentiation theorem
dr” .
B il k=1

10. g/[[(;_ f(r)dr] = F(s) Integration theorem

11. f(o0) = llm sF(s) Final value theorem’

12. f(0+) = hm sF(s) Initial value theorem?

§—00

'For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real

parts, and no more than one can be at the origin.

2For this theorem to be valid, f(#) must be continuous or have a step discontinuity at = 0 (that is, no

impulses or their derivatives at 1 = 0).

Table 2.2

© John Wiley & Sons, Inc. All rights reserved.

https://www.youtube.com/watch?v=HyKNko7yoHo&list=PL6vQCK4n4KX_2J5WaopJWt8P3Fz_qUYZi



TRANSFER FUNCTION

0 Transfer functions are commonly used to characterize the input—output
relationships of components or systems that can be described by linear,
time-invariant, differential equations.

Q The transfer function of a linear, time-invariant, differential equation

system is defined as “the ratio of the Laplace transform of the output
(response function) to the Laplace transform of the input (driving

function) under the assumption that all initial
conditions are zero”.

10



TRANSFER FUNCTION

Input | LTI Output
u(t) system y(t)

0 The general form of the differential equation for LTI-System is given by

) (n—1) (m) (m—1)
ayy +ta; y + ..+a,1y ta,y=box +by X + ..+bny_1X +byx

Time
0 where y is the system output and x is the input of the System dnf;“daeif

QThe transfer function of this system is obtained by taking the Laplace

transforms of both sides of Equation (under the assumption that all initial
conditions are zero).

apS™Y (s)+ -+ a,—1SY (s)+ a,, Y(s)= bpS™X(s) + - + by —1S1X(s) + b, X(S)
Then: [agS™ + -+ an_1ST + a,]Y (s) = [boS™ + -+ by 1St + by | X(S)

11



TRANSFER FUNCTION

Q Then the transfer function is

Laplace of Output ]

Transfer Function = G(s) = [ Laplace of Input

Assuming Zero initial Condition

Y(s) boS™ + ---+ b,,_1S1 + b,
X(s) aS*"+a S+ -+ a, 1S+ a,

G(s) =

0 Poles: are roots of the denominator (Values of s such that transfer
function becomes infinite)

0 Zeros: are roots of the numerator (Values of s such that transfer
function becomes 0)

12



Va

Why do we need LAPLACE transform?

Time-domain
ODE problems

Laplac

Difficult

Solutions of time-
domain Pr‘blems

Transfo_
(LT)
Easy

Inverse

LT

13|




Transfer function (Conclusion):

The transfer function of a system is a mathematical model in that it is an operational
method of expressing the differential equation that relates the output variable to the input
variable.

The transfer function is a property of a system itself, independent of the magnitude and
nature of the input or driving function.

The transfer function includes the units necessary to relate the input to the output;
however, it does not provide any information concerning the physical structure of the
system (The transfer functions of many physically different systems can be identical).

If the transfer function of a system is known, the output or response can be studied for
various forms of inputs with a view toward understanding the nature of the system.

If the transfer function of a system is unknown, it may be established experimentally by
introducing known inputs and studying the output of the system. Once established, a
transfer function gives a full description of the dynamic characteristics of the system, as
distinct from its physical description.

14



Modeling methods

Analytic method

e According to

A. Newton's Law of Motion
B. Law of Kirchhoff
C. System structure and parameters

The mathematical expression of system input and output can be derived.

* Thus, we build the mathematical model (suitable for simple systems).




Modeling methods

*System identification method

* Building the system model based on the system input-output signal.

* This method is usually applied when there is little information available for
the system.

Input

Neural Networks,
Fuzzy Systems

Black box Outgut

 Black box: the system is totally unknown.
* Grey box: the system is partially known.




Why Focus on Linear Time-Invariant (LTl) System

What is linear system?
-A system is called linear if the principle of superposition applies.

D ou (@) n@®
: system .
§ ' > system ——
ll—)(t) },2(’) : a.V + y
> system —— ; oLu, (1) + oL, (1) 1Y » V>

17



Why Focus on Linear Time-Invariant (LTl) System

Advantages of linear systems:

The overall response of a linear system can be obtained by
-- decomposing the input into a sum of elementary signals
-- figuring out each response to the respective elementary signal
-- adding all these responses together.




Models of system cc&mponents

Subsystem types found in controls systems

Electrical

Mechanical

Liquid Flow

Gas Flow

Thermal

Motors, Solenoids, Transducers,
Control Electronics

Control Valves, Gear Boxes, Linkages

Piping , Tanks, Pumps, Compressors,
Filters

Heating Elements, Heat Exchangers,
Insulation,




Models of system components

Systems’ behavior defined by component
characteristics

Example: electrical components

> Resistance > Voltage >

Capacitance Current

> Inductance > Charge >
> Delay >




Models of system components

Systems’ behavior defined by component
characteristics

Example: Mechanical Systems X

* Translational
* Linear Motion

* Rotational
* Rotational Motion




Modelling basics:

1. Awareness that many
components can be modelled

by simple linear equations of
the same structure.

2. Same mathematical structure
implies analogous behaviour
so understanding one means
understanding all!

3. Learn governing equations
and models for some key
engineering components.

Output
X I\ [N o [ N w IS o o

h?\




Describing Differential Equations for Translation
Mechanical Elements

/ Using Laplace
Transform

Force- Force- Impedance
Component velocity displacement Zu(s) = F(s) X(s)
Spring
r ~1—> x(7)
I ‘ .
Iifm\_» /(,) /(f) — K \"(7')(17' _/(f) — K.\'(f) K
i I
Blae -
Viscous damper
T —t— (7)
T & (l’.\'(f)
. . v(7 1) = s
il H—= /() Rl S =B B
=1 ——
L D £
Mass
—tw X (7) -~
dv(r) ; d=x(1) >
= M ) = M Ms=
. dt A dr? >
M —w [(1)
Note: The following set of symbols and units is used throughout this book: f(r) = N
(newtons). x(7) = m (meters), wW7) = m/s (meters,/ second). KX = N/m (newtons/ meter). B =
= newton-scconds’ / meter).

N-s/m (newton-scconds,/ meter), A/

kg (kilograms =




Common Usés of Dashpots

Door Stoppers Heavy Duty Mechanical Scale with Dashpot

Vehicle Suspension

2]
L 2

Bridge Suspension Shocks in a vehicle




Describing Differential Equations for Electrical and
Electronic Elements

TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s)=1I(s)/V(s)
4’ E L %, dv(r) l |
v(t) = —,/ i(t)dt i(t)=C v(t) = =q(1) i Cs
Capacitor Clo dt C Cs
ANN— v(1) = Ri(t) i) ==v(d) o< R 9 R L
Resis R dt R
esistor
( 6666 \ di(t ! 2
v(t) = L# i(t) = X / v(t)dr v(t) = Ld qit) Ls 1
Inductor at L Jo dt Ts

Note: The following set of symbols and units is used throughout this book: v(7) — V (volts), i(r) — A (amps), g(t) — Q (coulombs), C — F (farads),
R —Q (ohms), G — Q (mhos), L. — H (henries).

Table 2.3
© John Wiley & Sons, Inc. All rights reserved.
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q=|(i)dt

General Model Structure for Electrical Systems
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Numerical Examples



Examplel

Determine the differential equation and transfer function
Ppelying kUL we 3et ‘

Vin ()= Ri®)+ L%j;w.} 1 [imdt

Vo (*) - JC- {i(vdt - w) \’.‘“

Taking Laple tansfvm on both sides of CD

Vincs) = RIC8) + LsTe + 35 TCs)

= (Ls+R+ ]IV

— Takivng LT OM b0 Th Sides a <D
Vot = & T
T.F is 1 Teed '
Vo (O = = LestResH)
N\ Z fLcs™t pestf) IO
v‘ﬂ‘b cs l/LC

= S Estie




Example2

Determine the differential equation and transfer function

Applymy KVL 1o ldp T wa ek,

Vi (0= RO+ ¢, [0,-)dt - <D
Bff’,\f“ﬂ’j kV] o ‘Cﬁ)f,n qu*/

J- [( _.u)& Qa_; 4 J—Iu_d* - D)

P‘° vo = & [1,d¢ ~ cm)

Taking LT of ¢5) - (ID) we 9et

VinCs)= R, Tits) + c-t';[ T,08) - T.¢0)

=(Ri4 2] Tiew- 23 1
\'_’.C,sﬂ) T - 23 'ILu.) - @

= T+ T 0®

Ry Ra
V'\ﬁ 2 ‘l' IC| 2. L’.I vo
1 V! 2

J—’I,cs)-[-*- T EF ]Ig;)
= ®» -
Ty = [ 14 R.Gs+ ...L]I _
Vo= g T, (9 - &
Fom @) k(&Z) we o,
Vincs)= (_ﬁc,sﬂ] G &c.usﬂ;‘@ S hw
- L"('ﬁ)C“" ¢Lcls+ r i- Lm

S

- -
D .5

S Vg
) Q+R.c,sx|+ﬂ,,q:.+m))

VintY

C|s



Example2 (continued)

Determine the diﬁerentiaLequation and transfer function
\ Ra

s
T R Gs+C + R 54 !.R‘c,'z‘_{; $.¢5s
S\ C,s
=
Bic st + R Cust RGeS
s

—
—

|
E R,_C.CL‘L"’ R, c, s+ R,C S+RSGSH]
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Example3 (Lead Compehsator)
Determine the D.E. and T.F.

ppplyina kLot rode A we get

R AN
“ Vin-Vo, c g (Vinr\o) = 32
-Sagecd Re
ﬁﬁph' g L. T. We e

Vin(s)- \lo($)+ CS[VM‘-*)‘VOCX)] %.)
\Jm(u[-:ﬂrc.s_] o= V,(o[i- +aC5+ i;-]
Vines [ _[K_‘J Voo Bt ‘;ﬂzcﬂ-ﬂj

R& 1+ R|($)

VKD -
Vines) B4R+ KR, (s




Example4 (Lag Compensator)
Determine the D.E. and T.F.

Beplying EVL we gef
. . . e r'
V|n:e,|+¢,‘+.tf|dt- c3)
MALE S T - ) Vin

L Y |
Va =
'y

Apphing L-T- 42 @) CD) wne et
=(Rytbt &) TO
(8"’., s ) Ted)

[af S
otz Ro1 €O+ 2, TV

Lﬂ u‘H T 0

» Vo(sd \‘* R ¢S

meD \* Q. th)CS




— X(1)

\\\%\\

F(1)

Free Block Diagram (FBD):

: L . /
* The free body diagram helps in visualizing the forces acting
on the mass.

e Case study: spring-mass-damper system.

1. External Force (f):

* The external force f acts directly on the mass. It's the "driving force" that initiates the
system's motion.

* This force is responsible for the mass's acceleration.

2. Internal Forces:
* Inertia (m*X): This is the force due to the mass's inertia (resistance to change in
motion). The mass resists acceleration.

» Spring Force (k*x): The spring exerts a force proportional to its deformation (the change
in length). This force always acts opposite the direction of deformation.

 Damping Force (bx): The damper opposes the mass's velocity (x). This force is
proportional to the velocity and acts in the opposite direction.

34



Example5 »
Determine the D.E. and T.F. ! K
F.B.D. of +he given system s
mx Bx Ex |
Fz MA4+LEX+ER
h"’yin’ LT. we 9ef

F FeO= M ax )+ Bsxes) + k X
F ey (Msdas k)%

RIS .. - | |
A Ms'4 sk
’/"'\

s +L.s+k
m- M




Example6 %

° - ‘
Determinethe D.E.and T.F. . |
Dete "‘\"‘r 1 » N -/‘; x) oy The & ctew

"I S o ; T
ko
£ £.0. of given system s

Njii .' Xy . I
Focce bolarce A M, ‘}'4\‘-‘,3
4 By X+ X, = by (10
Applying L.T. we et

Mty ka(%-2) My S, C0 4 B3 X, (04 KX 0) = k, Ou0 %))
L[y s Bys4 B B X 00) = B

ke %08

TR = M'.;" 55+ kAt ke

L
M s+ 8,5+k kL
X (O = ' k‘- ¥ b {148
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Example6 >

. oy &
Determinethe D.E.and T.F. K '
Deteemine 1 w0 .IA,"‘\ $o¢ e syshewm

‘ TECY S 0 e T2
. | 71
E.E.0. o '}:t.-:'v‘ syshem s Feorce bohmd' N 9w
mi.' .0 “"\ F - m& X, + k& m&-’l) rn
Peplying L.T- we 9et F

Eons MS O+ RS =~ EXW
= (st k] %O - BXW

- pews (Mastla) (M B3 k)X (0=l XD

‘\i.& ko (%2 "N "

- ‘m H!( M&% 55"’ klfh‘)" k‘ x‘“)
&




Example6 %

4 . F ‘
Determme the D.E. and TF . '
PR, 3 ::‘M : ‘f- [ —— T 7
ko

£ £.0. of given system s

¥ B ke . T

FCs)= Fm o +k, ) y ()~ L-?.,\,'li’."’.\f
~(Mes+ ¥, 1%~ E 2 ‘]"4(-9
[‘s‘,’ ] LE. m, s B,s+ k"l'h.
Mt ka(%-2) _ [P m,s‘-f g5tk b))~k x ey
m.s 4+ ‘.34‘ k."’ ka

. X2 (s)

Fes) - -(m&st‘* k) C Myst 8,34 & 4E,) -k

38




Example7 %
Determine the D.E. and T.F. Y

Tre £bD. ot given system is  popying | T we get
FC) = My st )46, 3X)68) %O

X By ¥
A S0 + Ky (X €0 =%(9)]
m
‘ =(m S Bys 4, ] X -
F k (x -x‘) ‘ h)&w
il Applying force balavee o My, We 3+
~ M, % = ke, (%~ A0 Fez (M4 bs4 k] —
Aeplying LT We 9et T“& X\t
REE B SR A g T (m‘} o ) (MSH)-¥e.
APRlying Force belance 0 My we ek (G0 2 A ey =y €O = O *"M - (Mt v 00y
F = Mm%+ 8%+ kX, 4k, OX,-2,) e - M:S"'H::.
2 2 -
X) _F—k = % "’E?{) = %‘g‘-ﬂ,s-nnn-h.)(ﬂhwh)-\f
%60 = m;fﬂ:‘ D Eied % by Teplacing X)€Y with

KD 39




Example8 | 2
Determine the D.E. and T.F. X3 (8D
FO

The F.8.0 is a3 shown bebw

 SLL :
™) MoX, F= Mo X, + 8,1k Gu-%)

ﬁff'win; force balatce o My We Pek ﬁﬁ)yin; L'T. W Sef
m"'X.v + B, )\(; ‘f‘t"x, = kl‘(‘xl-' X)) FCO = [’!"3"". & S+ Q&CS) - )LLx,(_g)
‘ - Detecrmine 20 § R (D
Applying LT we 9et 10, A 200
(4 st Kyt X)) = KX
ko
Xy (8) s —x- NS
e m\&‘}‘{”&""k‘
Xu(8) = Mot b3t K\ TRe o
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EX. Air bag and accelerometer

* Tiny MEMS accelerometer
* Microelectromechanical systems (MEMS)

Air Bag

Infla_tor

Crash

Sensor . Nitrogen

M. ° Gas

(Pictures from various websites) |




EX. RC Circuit Model of the Membrane

* Basic model of membrane of a neuron:

le
=+ € = 10 nF/mm?

e Cm< m rmy =1 MQ mm?

Cm= CmA

) -
"m = rm //’4

Membrane + E

Neuron (Cell) Body av _ (V-£E;) 1

" r A Or Equivalently:

II"-?'f'i' - ri‘?i'c??i': R??i‘ (_T.?h’ 15 dV
the membrane time T, ? = —(V —F I ) + / e-Rm

constant




EX. Human Body

upeor

Ahn e g

Fir i rrrrrrrrrry
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Ex: Mechanical accelerometer

— ¢ —Car position
|

: , Acce/lerometer
i ’/

'—Y— || Case

A M T s
spring b

Jet engine

| f(t)
evitated test sled My =

Guide rail



Example

e Restaurant plate dispenser

—

]

/ Plates
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Example: Automobile Suspension
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Automobile Suspension

,.J iT = i =
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Automobile suspension system

i )
I X1
e
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Example: Train Suspension

my
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